Решение треугольника c катетом 1000 и углом 67.5 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1000
b=1000
c=1082.4
67.5°
22.5°
S=207117.2
P=3082.4
r=458.8
R=541.2
h=382.7
mc=541.2

Гипотенуза:
c =
a
sin(α°)
=
1000
sin(67.5°)
=
1000
0.9239
= 1082.4

Угол:
β° = 90°-α°
= 90°-67.5°
= 22.5°

Высота:
h = a·cos(α°)
= 1000·cos(67.5°)
= 1000·0.3827
= 382.7

Катет:
b = h·
c
a
= 382.7·
1082.4
1000
= 414.23
или:
b =  c2 - a2
=  1082.42 - 10002
=  1171590 - 1000000
=  171589.8
= 414.23
или:
b = c·sin(β°)
= 1082.4·sin(22.5°)
= 1082.4·0.3827
= 414.23
или:
b = c·cos(α°)
= 1082.4·cos(67.5°)
= 1082.4·0.3827
= 414.23
или:
b =
h
sin(α°)
=
382.7
sin(67.5°)
=
382.7
0.9239
= 414.22
или:
b =
h
cos(β°)
=
382.7
cos(22.5°)
=
382.7
0.9239
= 414.22
или:
b =  
c2 +  c4- 4c2h2
2
=  
1082.42 +  1082.44- 4·1082.42·382.72
2
=  
1171590 +  1372623128100- 4·1171590·146459.3
2
=  
1171590 +  686262122952
2
= 1000

Площадь:
S =
h·c
2
=
382.7·1082.4
2
= 207117.2

Радиус описанной окружности:
R =
c
2
=
1082.4
2
= 541.2

Медиана:
Mc =
c
2
=
1082.4
2
= 541.2

Радиус вписанной окружности:
r =
a+b-c
2
=
1000+1000-1082.4
2
= 458.8

Периметр:
P = a+b+c
= 1000+1000+1082.4
= 3082.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.