Решение треугольника c катетом 0,6 и углом 25 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=0.2799
b=0.6
c=0.662
25°
65°
S=0.08394
P=1.542
r=0.109
R=0.331
h=0.2536
mc=0.331

Гипотенуза:
c =
b
cos(α°)
=
0.6
cos(25°)
=
0.6
0.9063
= 0.662

Угол:
β° = 90°-α°
= 90°-25°
= 65°

Высота:
h = b·sin(α°)
= 0.6·sin(25°)
= 0.6·0.4226
= 0.2536

Катет:
a = h·
c
b
= 0.2536·
0.662
0.6
= 0.2798
или:
a =  c2 - b2
=  0.6622 - 0.62
=  0.4382 - 0.36
=  0.07824
= 0.2797
или:
a = c·sin(α°)
= 0.662·sin(25°)
= 0.662·0.4226
= 0.2798
или:
a = c·cos(β°)
= 0.662·cos(65°)
= 0.662·0.4226
= 0.2798
или:
a =
h
cos(α°)
=
0.2536
cos(25°)
=
0.2536
0.9063
= 0.2798
или:
a =
h
sin(β°)
=
0.2536
sin(65°)
=
0.2536
0.9063
= 0.2798
или:
a =  
c2 -  c4- 4c2h2
2
=  
0.6622 -  0.6624- 4·0.6622·0.25362
2
=  
0.4382 -  0.192- 4·0.4382·0.06431
2
=  
0.4382 -  0.07928
2
= 0.2799

Площадь:
S =
h·c
2
=
0.2536·0.662
2
= 0.08394

Радиус описанной окружности:
R =
c
2
=
0.662
2
= 0.331

Медиана:
Mc =
c
2
=
0.662
2
= 0.331

Радиус вписанной окружности:
r =
a+b-c
2
=
0.2799+0.6-0.662
2
= 0.109

Периметр:
P = a+b+c
= 0.2799+0.6+0.662
= 1.542
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.