Решение треугольника c катетом 6,4 и катетом 6,4 и углом 25,1 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=6.4
b=6.4
c=7.067
25.1°
64.9°
S=20.48
P=19.87
r=2.867
R=3.534
h=5.796
mc=3.534

Гипотенуза:
c =  a2 + b2
=  6.42 + 6.42
=  40.96 + 40.96
=  81.92
= 9.051
или:
c =
a
sin(α°)
=
6.4
sin(25.1°)
=
6.4
0.4242
= 15.09
или:
c =
b
cos(α°)
=
6.4
cos(25.1°)
=
6.4
0.9056
= 7.067

Угол:
β° = 90°-α°
= 90°-25.1°
= 64.9°

Высота:
h = b·sin(α°)
= 6.4·sin(25.1°)
= 6.4·0.4242
= 2.715
или:
h = a·cos(α°)
= 6.4·cos(25.1°)
= 6.4·0.9056
= 5.796

Площадь:
S =
ab
2
=
6.4·6.4
2
= 20.48

Радиус вписанной окружности:
r =
a+b-c
2
=
6.4+6.4-7.067
2
= 2.867

Радиус описанной окружности:
R =
c
2
=
7.067
2
= 3.534

Периметр:
P = a+b+c
= 6.4+6.4+7.067
= 19.87

Медиана:
Mc =
c
2
=
7.067
2
= 3.534
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.