Решение треугольника c катетом 6 и углом 14 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1.495
b=6
c=6.184
14°
76°
S=4.486
P=13.68
r=0.6555
R=3.092
h=1.451
mc=3.092

Гипотенуза:
c =
b
cos(α°)
=
6
cos(14°)
=
6
0.9703
= 6.184

Угол:
β° = 90°-α°
= 90°-14°
= 76°

Высота:
h = b·sin(α°)
= 6·sin(14°)
= 6·0.2419
= 1.451

Катет:
a = h·
c
b
= 1.451·
6.184
6
= 1.495
или:
a =  c2 - b2
=  6.1842 - 62
=  38.24 - 36
=  2.242
= 1.497
или:
a = c·sin(α°)
= 6.184·sin(14°)
= 6.184·0.2419
= 1.496
или:
a = c·cos(β°)
= 6.184·cos(76°)
= 6.184·0.2419
= 1.496
или:
a =
h
cos(α°)
=
1.451
cos(14°)
=
1.451
0.9703
= 1.495
или:
a =
h
sin(β°)
=
1.451
sin(76°)
=
1.451
0.9703
= 1.495
или:
a =  
c2 -  c4- 4c2h2
2
=  
6.1842 -  6.1844- 4·6.1842·1.4512
2
=  
38.24 -  1462.3- 4·38.24·2.105
2
=  
38.24 -  1140.3
2
= 1.495

Площадь:
S =
h·c
2
=
1.451·6.184
2
= 4.486

Радиус описанной окружности:
R =
c
2
=
6.184
2
= 3.092

Медиана:
Mc =
c
2
=
6.184
2
= 3.092

Радиус вписанной окружности:
r =
a+b-c
2
=
1.495+6-6.184
2
= 0.6555

Периметр:
P = a+b+c
= 1.495+6+6.184
= 13.68
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.