Решение треугольника c катетом 4500 и гипотенузой 4850 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1809
b=4500
c=4850
21.9°
68.1°
S=4070250
P=11159
r=729.5
R=2425
h=1678.4
mc=2425

Катет:
a =  c2 - b2
=  48502 - 45002
=  23522500 - 20250000
=  3272500
= 1809

Угол:
β° = arcsin
b
c
= arcsin
4500
4850
= 68.1°

Радиус описанной окружности:
R =
c
2
=
4850
2
= 2425

Медиана:
Mc =
c
2
=
4850
2
= 2425

Угол:
α° = arcsin
a
c
= arcsin
1809
4850
= 21.9°
или:
α° = 90°-β°
= 90°-68.1°
= 21.9°

Высота:
h =
ab
c
=
1809·4500
4850
= 1678.5
или:
h = b·cos(β°)
= 4500·cos(68.1°)
= 4500·0.373
= 1678.5
или:
h = a·sin(β°)
= 1809·sin(68.1°)
= 1809·0.9278
= 1678.4

Площадь:
S =
ab
2
=
1809·4500
2
= 4070250

Радиус вписанной окружности:
r =
a+b-c
2
=
1809+4500-4850
2
= 729.5

Периметр:
P = a+b+c
= 1809+4500+4850
= 11159
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.