Решение треугольника c катетом 2005 и гипотенузой 2936 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2144.8
b=2005
c=2936
46.9°
43.1°
S=2150162
P=7085.8
r=606.9
R=1468
h=1465.5
mc=1468

Катет:
a =  c2 - b2
=  29362 - 20052
=  8620096 - 4020025
=  4600071
= 2144.8

Угол:
β° = arcsin
b
c
= arcsin
2005
2936
= 43.1°

Радиус описанной окружности:
R =
c
2
=
2936
2
= 1468

Медиана:
Mc =
c
2
=
2936
2
= 1468

Угол:
α° = arcsin
a
c
= arcsin
2144.8
2936
= 46.9°
или:
α° = 90°-β°
= 90°-43.1°
= 46.9°

Высота:
h =
ab
c
=
2144.8·2005
2936
= 1464.7
или:
h = b·cos(β°)
= 2005·cos(43.1°)
= 2005·0.7302
= 1464.1
или:
h = a·sin(β°)
= 2144.8·sin(43.1°)
= 2144.8·0.6833
= 1465.5

Площадь:
S =
ab
2
=
2144.8·2005
2
= 2150162

Радиус вписанной окружности:
r =
a+b-c
2
=
2144.8+2005-2936
2
= 606.9

Периметр:
P = a+b+c
= 2144.8+2005+2936
= 7085.8
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.