меню

Решение треугольника c катетом 0.2 и углом 8 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=0.2
b=1.423
c=1.437
82°
S=0.1423
P=3.06
r=0.093
R=0.7185
h=0.1981
mc=0.7185

Гипотенуза:
c =
a
sin(α°)
=
0.2
sin(8°)
=
0.2
0.1392
= 1.437

Угол:
β° = 90°-α°
= 90°-8°
= 82°

Высота:
h = a·cos(α°)
= 0.2·cos(8°)
= 0.2·0.9903
= 0.1981

Катет:
b = h·
c
a
= 0.1981·
1.437
0.2
= 1.423
или:
b =  c2 - a2
=  1.4372 - 0.22
=  2.065 - 0.04
=  2.025
= 1.423
или:
b = c·sin(β°)
= 1.437·sin(82°)
= 1.437·0.9903
= 1.423
или:
b = c·cos(α°)
= 1.437·cos(8°)
= 1.437·0.9903
= 1.423
или:
b =
h
sin(α°)
=
0.1981
sin(8°)
=
0.1981
0.1392
= 1.423
или:
b =
h
cos(β°)
=
0.1981
cos(82°)
=
0.1981
0.1392
= 1.423
или:
b =  
c2 +  c4- 4c2h2
2
=  
1.4372 +  1.4374- 4·1.4372·0.19812
2
=  
2.065 +  4.264- 4·2.065·0.03924
2
=  
2.065 +  3.94
2
= 1.423

Площадь:
S =
h·c
2
=
0.1981·1.437
2
= 0.1423

Радиус описанной окружности:
R =
c
2
=
1.437
2
= 0.7185

Медиана:
Mc =
c
2
=
1.437
2
= 0.7185

Радиус вписанной окружности:
r =
a+b-c
2
=
0.2+1.423-1.437
2
= 0.093

Периметр:
P = a+b+c
= 0.2+1.423+1.437
= 3.06
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: