Решение треугольника c катетом 0.2 и углом 15 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=0.05358
b=0.2
c=0.2071
15°
75°
S=0.00536
P=0.4607
r=0.02324
R=0.1036
h=0.05176
mc=0.1036

Гипотенуза:
c =
b
cos(α°)
=
0.2
cos(15°)
=
0.2
0.9659
= 0.2071

Угол:
β° = 90°-α°
= 90°-15°
= 75°

Высота:
h = b·sin(α°)
= 0.2·sin(15°)
= 0.2·0.2588
= 0.05176

Катет:
a = h·
c
b
= 0.05176·
0.2071
0.2
= 0.0536
или:
a =  c2 - b2
=  0.20712 - 0.22
=  0.04289 - 0.04
=  0.00289
= 0.05376
или:
a = c·sin(α°)
= 0.2071·sin(15°)
= 0.2071·0.2588
= 0.0536
или:
a = c·cos(β°)
= 0.2071·cos(75°)
= 0.2071·0.2588
= 0.0536
или:
a =
h
cos(α°)
=
0.05176
cos(15°)
=
0.05176
0.9659
= 0.05359
или:
a =
h
sin(β°)
=
0.05176
sin(75°)
=
0.05176
0.9659
= 0.05359
или:
a =  
c2 -  c4- 4c2h2
2
=  
0.20712 -  0.20714- 4·0.20712·0.051762
2
=  
0.04289 -  0.00184- 4·0.04289·0.002679
2
=  
0.04289 -  0.00138
2
= 0.05358

Площадь:
S =
h·c
2
=
0.05176·0.2071
2
= 0.00536

Радиус описанной окружности:
R =
c
2
=
0.2071
2
= 0.1036

Медиана:
Mc =
c
2
=
0.2071
2
= 0.1036

Радиус вписанной окружности:
r =
a+b-c
2
=
0.05358+0.2-0.2071
2
= 0.02324

Периметр:
P = a+b+c
= 0.05358+0.2+0.2071
= 0.4607
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.