Решение треугольника c катетом 6.8 и гипотенузой 9.3 и углом 20 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=6.8
b=8.739
c=9.3
20°
70°
S=29.71
P=24.84
r=3.12
R=4.65
h=6.39
mc=4.65

Катет:
b =  c2 - a2
=  9.32 - 6.82
=  86.49 - 46.24
=  40.25
= 6.344
или:
b = c·cos(α°)
= 9.3·cos(20°)
= 9.3·0.9397
= 8.739

Угол:
β° = 90°-α°
= 90°-20°
= 70°

Высота:
h = a·cos(α°)
= 6.8·cos(20°)
= 6.8·0.9397
= 6.39

Радиус описанной окружности:
R =
c
2
=
9.3
2
= 4.65

Медиана:
Mc =
c
2
=
9.3
2
= 4.65

Площадь:
S =
ab
2
=
6.8·8.739
2
= 29.71
или:
S =
h·c
2
=
6.39·9.3
2
= 29.71

Радиус вписанной окружности:
r =
a+b-c
2
=
6.8+8.739-9.3
2
= 3.12

Периметр:
P = a+b+c
= 6.8+8.739+9.3
= 24.84
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.