меню

Решение треугольника c катетом 2.5 и углом 4 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=2.5
b=2.5
c=2.506
86°
S=0.2185
P=7.506
r=1.247
R=1.253
h=0.1744
mc=1.253

Гипотенуза:
c =
a
cos(β°)
=
2.5
cos(4°)
=
2.5
0.9976
= 2.506

Угол:
α° = 90°-β°
= 90°-4°
= 86°

Высота:
h = a·sin(β°)
= 2.5·sin(4°)
= 2.5·0.06976
= 0.1744

Катет:
b = h·
c
a
= 0.1744·
2.506
2.5
= 0.1748
или:
b =  c2 - a2
=  2.5062 - 2.52
=  6.28 - 6.25
=  0.03004
= 0.1733
или:
b = c·sin(β°)
= 2.506·sin(4°)
= 2.506·0.06976
= 0.1748
или:
b = c·cos(α°)
= 2.506·cos(86°)
= 2.506·0.06976
= 0.1748
или:
b =
h
sin(α°)
=
0.1744
sin(86°)
=
0.1744
0.9976
= 0.1748
или:
b =
h
cos(β°)
=
0.1744
cos(4°)
=
0.1744
0.9976
= 0.1748
или:
b =  
c2 +  c4- 4c2h2
2
=  
2.5062 +  2.5064- 4·2.5062·0.17442
2
=  
6.28 +  39.44- 4·6.28·0.03042
2
=  
6.28 +  38.68
2
= 2.5

Площадь:
S =
h·c
2
=
0.1744·2.506
2
= 0.2185

Радиус описанной окружности:
R =
c
2
=
2.506
2
= 1.253

Медиана:
Mc =
c
2
=
2.506
2
= 1.253

Радиус вписанной окружности:
r =
a+b-c
2
=
2.5+2.5-2.506
2
= 1.247

Периметр:
P = a+b+c
= 2.5+2.5+2.506
= 7.506
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: