меню

Решение треугольника c катетом 300 и углом 27 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=152.86
b=300
c=336.7
27°
63°
S=22929.3
P=789.56
r=58.08
R=168.35
h=136.2
mc=168.35

Гипотенуза:
c =
b
cos(α°)
=
300
cos(27°)
=
300
0.891
= 336.7

Угол:
β° = 90°-α°
= 90°-27°
= 63°

Высота:
h = b·sin(α°)
= 300·sin(27°)
= 300·0.454
= 136.2

Катет:
a = h·
c
b
= 136.2·
336.7
300
= 152.86
или:
a =  c2 - b2
=  336.72 - 3002
=  113366.9 - 90000
=  23366.9
= 152.86
или:
a = c·sin(α°)
= 336.7·sin(27°)
= 336.7·0.454
= 152.86
или:
a = c·cos(β°)
= 336.7·cos(63°)
= 336.7·0.454
= 152.86
или:
a =
h
cos(α°)
=
136.2
cos(27°)
=
136.2
0.891
= 152.86
или:
a =
h
sin(β°)
=
136.2
sin(63°)
=
136.2
0.891
= 152.86
или:
a =  
c2 -  c4- 4c2h2
2
=  
336.72 -  336.74- 4·336.72·136.22
2
=  
113366.9 -  12852054016- 4·113366.9·18550.4
2
=  
113366.9 -  4440048649
2
= 152.86

Площадь:
S =
h·c
2
=
136.2·336.7
2
= 22929.3

Радиус описанной окружности:
R =
c
2
=
336.7
2
= 168.35

Медиана:
Mc =
c
2
=
336.7
2
= 168.35

Радиус вписанной окружности:
r =
a+b-c
2
=
152.86+300-336.7
2
= 58.08

Периметр:
P = a+b+c
= 152.86+300+336.7
= 789.56
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: