Решение треугольника c катетом 7,8 и катетом 4,95 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=7.8
b=4.95
c=9.238
57.6°
32.4°
S=19.31
P=21.99
r=1.756
R=4.619
h=4.181
mc=4.619

Гипотенуза:
c =  a2 + b2
=  7.82 + 4.952
=  60.84 + 24.5
=  85.34
= 9.238

Площадь:
S =
ab
2
=
7.8·4.95
2
= 19.31

Угол:
α° = arcsin
a
c
= arcsin
7.8
9.238
= 57.6°

Угол:
β° = arcsin
b
c
= arcsin
4.95
9.238
= 32.4°

Высота:
h =
ab
c
=
7.8·4.95
9.238
= 4.179
или:
h =
2S
c
=
2 · 19.31
9.238
= 4.181

Радиус вписанной окружности:
r =
a+b-c
2
=
7.8+4.95-9.238
2
= 1.756

Радиус описанной окружности:
R =
c
2
=
9.238
2
= 4.619

Периметр:
P = a+b+c
= 7.8+4.95+9.238
= 21.99

Медиана:
Mc =
c
2
=
9.238
2
= 4.619
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.