Решение треугольника c катетом 181 и катетом 180 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=181
b=180
c=255.27
45.2°
44.8°
S=16290
P=616.27
r=52.87
R=127.64
h=127.63
mc=127.64

Гипотенуза:
c =  a2 + b2
=  1812 + 1802
=  32761 + 32400
=  65161
= 255.27

Площадь:
S =
ab
2
=
181·180
2
= 16290

Угол:
α° = arcsin
a
c
= arcsin
181
255.27
= 45.2°

Угол:
β° = arcsin
b
c
= arcsin
180
255.27
= 44.8°

Высота:
h =
ab
c
=
181·180
255.27
= 127.63
или:
h =
2S
c
=
2 · 16290
255.27
= 127.63

Радиус вписанной окружности:
r =
a+b-c
2
=
181+180-255.27
2
= 52.87

Радиус описанной окружности:
R =
c
2
=
255.27
2
= 127.64

Периметр:
P = a+b+c
= 181+180+255.27
= 616.27

Медиана:
Mc =
c
2
=
255.27
2
= 127.64
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.