Решение треугольника c катетом 2655 и углом 17 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=811.8
b=2655
c=2776.3
17°
73°
S=1077649
P=6243.1
r=345.25
R=1388.2
h=776.32
mc=1388.2

Гипотенуза:
c =
b
cos(α°)
=
2655
cos(17°)
=
2655
0.9563
= 2776.3

Угол:
β° = 90°-α°
= 90°-17°
= 73°

Высота:
h = b·sin(α°)
= 2655·sin(17°)
= 2655·0.2924
= 776.32

Катет:
a = h·
c
b
= 776.32·
2776.3
2655
= 811.79
или:
a =  c2 - b2
=  2776.32 - 26552
=  7707842 - 7049025
=  658816.7
= 811.68
или:
a = c·sin(α°)
= 2776.3·sin(17°)
= 2776.3·0.2924
= 811.79
или:
a = c·cos(β°)
= 2776.3·cos(73°)
= 2776.3·0.2924
= 811.79
или:
a =
h
cos(α°)
=
776.32
cos(17°)
=
776.32
0.9563
= 811.8
или:
a =
h
sin(β°)
=
776.32
sin(73°)
=
776.32
0.9563
= 811.8
или:
a =  
c2 -  c4- 4c2h2
2
=  
2776.32 -  2776.34- 4·2776.32·776.322
2
=  
7707842 -  59410828296964- 4·7707842·602672.7
2
=  
7707842 -  40829604499710
2
= 811.8

Площадь:
S =
h·c
2
=
776.32·2776.3
2
= 1077649

Радиус описанной окружности:
R =
c
2
=
2776.3
2
= 1388.2

Медиана:
Mc =
c
2
=
2776.3
2
= 1388.2

Радиус вписанной окружности:
r =
a+b-c
2
=
811.8+2655-2776.3
2
= 345.25

Периметр:
P = a+b+c
= 811.8+2655+2776.3
= 6243.1
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.