Решение треугольника c катетом 3 и углом 43 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2.795
b=3
c=4.102
43°
47°
S=4.196
P=9.897
r=0.8465
R=2.051
h=2.046
mc=2.051

Гипотенуза:
c =
b
cos(α°)
=
3
cos(43°)
=
3
0.7314
= 4.102

Угол:
β° = 90°-α°
= 90°-43°
= 47°

Высота:
h = b·sin(α°)
= 3·sin(43°)
= 3·0.682
= 2.046

Катет:
a = h·
c
b
= 2.046·
4.102
3
= 2.798
или:
a =  c2 - b2
=  4.1022 - 32
=  16.83 - 9
=  7.826
= 2.797
или:
a = c·sin(α°)
= 4.102·sin(43°)
= 4.102·0.682
= 2.798
или:
a = c·cos(β°)
= 4.102·cos(47°)
= 4.102·0.682
= 2.798
или:
a =
h
cos(α°)
=
2.046
cos(43°)
=
2.046
0.7314
= 2.797
или:
a =
h
sin(β°)
=
2.046
sin(47°)
=
2.046
0.7314
= 2.797
или:
a =  
c2 -  c4- 4c2h2
2
=  
4.1022 -  4.1024- 4·4.1022·2.0462
2
=  
16.83 -  283.25- 4·16.83·4.186
2
=  
16.83 -  1.448
2
= 2.795

Площадь:
S =
h·c
2
=
2.046·4.102
2
= 4.196

Радиус описанной окружности:
R =
c
2
=
4.102
2
= 2.051

Медиана:
Mc =
c
2
=
4.102
2
= 2.051

Радиус вписанной окружности:
r =
a+b-c
2
=
2.795+3-4.102
2
= 0.8465

Периметр:
P = a+b+c
= 2.795+3+4.102
= 9.897
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.