меню

Решение треугольника c катетом 1,74 и углом 55 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=1.74
b=2.484
c=3.033
35°
55°
S=2.161
P=7.257
r=0.5955
R=1.517
h=1.425
mc=1.517

Гипотенуза:
c =
a
cos(β°)
=
1.74
cos(55°)
=
1.74
0.5736
= 3.033

Угол:
α° = 90°-β°
= 90°-55°
= 35°

Высота:
h = a·sin(β°)
= 1.74·sin(55°)
= 1.74·0.8192
= 1.425

Катет:
b = h·
c
a
= 1.425·
3.033
1.74
= 2.484
или:
b =  c2 - a2
=  3.0332 - 1.742
=  9.199 - 3.028
=  6.171
= 2.484
или:
b = c·sin(β°)
= 3.033·sin(55°)
= 3.033·0.8192
= 2.485
или:
b = c·cos(α°)
= 3.033·cos(35°)
= 3.033·0.8192
= 2.485
или:
b =
h
sin(α°)
=
1.425
sin(35°)
=
1.425
0.5736
= 2.484
или:
b =
h
cos(β°)
=
1.425
cos(55°)
=
1.425
0.5736
= 2.484
или:
b =  
c2 +  c4- 4c2h2
2
=  
3.0332 +  3.0334- 4·3.0332·1.4252
2
=  
9.199 +  84.62- 4·9.199·2.031
2
=  
9.199 +  9.887
2
= 2.484

Площадь:
S =
h·c
2
=
1.425·3.033
2
= 2.161

Радиус описанной окружности:
R =
c
2
=
3.033
2
= 1.517

Медиана:
Mc =
c
2
=
3.033
2
= 1.517

Радиус вписанной окружности:
r =
a+b-c
2
=
1.74+2.484-3.033
2
= 0.5955

Периметр:
P = a+b+c
= 1.74+2.484+3.033
= 7.257
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: