Решение треугольника c катетом 1150 и гипотенузой 3000 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1150
b=2770.8
c=3000
22.5°
67.5°
S=1593210
P=6920.8
r=460.4
R=1500
h=1062.5
mc=1500

Катет:
b =  c2 - a2
=  30002 - 11502
=  9000000 - 1322500
=  7677500
= 2770.8

Угол:
α° = arcsin
a
c
= arcsin
1150
3000
= 22.5°

Радиус описанной окружности:
R =
c
2
=
3000
2
= 1500

Медиана:
Mc =
c
2
=
3000
2
= 1500

Угол:
β° = arcsin
b
c
= arcsin
2770.8
3000
= 67.5°
или:
β° = 90°-α°
= 90°-22.5°
= 67.5°

Высота:
h =
ab
c
=
1150·2770.8
3000
= 1062.1
или:
h = b·sin(α°)
= 2770.8·sin(22.5°)
= 2770.8·0.3827
= 1060.4
или:
h = a·cos(α°)
= 1150·cos(22.5°)
= 1150·0.9239
= 1062.5

Площадь:
S =
ab
2
=
1150·2770.8
2
= 1593210

Радиус вписанной окружности:
r =
a+b-c
2
=
1150+2770.8-3000
2
= 460.4

Периметр:
P = a+b+c
= 1150+2770.8+3000
= 6920.8
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.