Решение треугольника c гипотенузой 325 и углом 75 и углом 15 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=313.92
b=84.11
c=325
75°
15°
S=13201.9
P=723.03
r=36.52
R=162.5
h=81.24
mc=162.5

Катет:
a = c·sin(α°)
= 325·sin(75°)
= 325·0.9659
= 313.92
или:
a = c·cos(β°)
= 325·cos(15°)
= 325·0.9659
= 313.92

Катет:
b = c·sin(β°)
= 325·sin(15°)
= 325·0.2588
= 84.11
или:
b = c·cos(α°)
= 325·cos(75°)
= 325·0.2588
= 84.11

Радиус описанной окружности:
R =
c
2
=
325
2
= 162.5

Медиана:
Mc =
c
2
=
325
2
= 162.5

Высота:
h =
ab
c
=
313.92·84.11
325
= 81.24
или:
h = b·sin(α°)
= 84.11·sin(75°)
= 84.11·0.9659
= 81.24
или:
h = b·cos(β°)
= 84.11·cos(15°)
= 84.11·0.9659
= 81.24
или:
h = a·cos(α°)
= 313.92·cos(75°)
= 313.92·0.2588
= 81.24
или:
h = a·sin(β°)
= 313.92·sin(15°)
= 313.92·0.2588
= 81.24

Площадь:
S =
ab
2
=
313.92·84.11
2
= 13201.9

Радиус вписанной окружности:
r =
a+b-c
2
=
313.92+84.11-325
2
= 36.52

Периметр:
P = a+b+c
= 313.92+84.11+325
= 723.03
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.