Решение треугольника c катетом 1630 и катетом 1630 и углом 45 и углом 45 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1630
b=1630
c=2305.2
45°
45°
S=1328450
P=5565.2
r=477.4
R=1152.6
h=1152.6
mc=1152.6

Гипотенуза:
c =  a2 + b2
=  16302 + 16302
=  2656900 + 2656900
=  5313800
= 2305.2
или:
c =
a
sin(α°)
=
1630
sin(45°)
=
1630
0.7071
= 2305.2
или:
c =
b
sin(β°)
=
1630
sin(45°)
=
1630
0.7071
= 2305.2
или:
c =
b
cos(α°)
=
1630
cos(45°)
=
1630
0.7071
= 2305.2
или:
c =
a
cos(β°)
=
1630
cos(45°)
=
1630
0.7071
= 2305.2

Высота:
h = b·sin(α°)
= 1630·sin(45°)
= 1630·0.7071
= 1152.6
или:
h = b·cos(β°)
= 1630·cos(45°)
= 1630·0.7071
= 1152.6
или:
h = a·cos(α°)
= 1630·cos(45°)
= 1630·0.7071
= 1152.6
или:
h = a·sin(β°)
= 1630·sin(45°)
= 1630·0.7071
= 1152.6

Площадь:
S =
ab
2
=
1630·1630
2
= 1328450

Радиус вписанной окружности:
r =
a+b-c
2
=
1630+1630-2305.2
2
= 477.4

Радиус описанной окружности:
R =
c
2
=
2305.2
2
= 1152.6

Периметр:
P = a+b+c
= 1630+1630+2305.2
= 5565.2

Медиана:
Mc =
c
2
=
2305.2
2
= 1152.6
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.