Решение треугольника c катетом 270 и катетом 400 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=270
b=400
c=482.6
34°
56°
S=54000
P=1152.6
r=93.7
R=241.3
h=223.79
mc=241.3

Гипотенуза:
c =  a2 + b2
=  2702 + 4002
=  72900 + 160000
=  232900
= 482.6

Площадь:
S =
ab
2
=
270·400
2
= 54000

Угол:
α° = arcsin
a
c
= arcsin
270
482.6
= 34°

Угол:
β° = arcsin
b
c
= arcsin
400
482.6
= 56°

Высота:
h =
ab
c
=
270·400
482.6
= 223.79
или:
h =
2S
c
=
2 · 54000
482.6
= 223.79

Радиус вписанной окружности:
r =
a+b-c
2
=
270+400-482.6
2
= 93.7

Радиус описанной окружности:
R =
c
2
=
482.6
2
= 241.3

Периметр:
P = a+b+c
= 270+400+482.6
= 1152.6

Медиана:
Mc =
c
2
=
482.6
2
= 241.3
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.