Решение треугольника c гипотенузой 20.94 и углом 41 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=13.74
b=15.8
c=20.94
41°
49°
S=108.55
P=50.48
r=4.3
R=10.47
h=10.37
mc=10.47

Катет:
a = c·sin(α°)
= 20.94·sin(41°)
= 20.94·0.6561
= 13.74

Катет:
b = c·cos(α°)
= 20.94·cos(41°)
= 20.94·0.7547
= 15.8

Угол:
β° = 90°-α°
= 90°-41°
= 49°

Радиус описанной окружности:
R =
c
2
=
20.94
2
= 10.47

Медиана:
Mc =
c
2
=
20.94
2
= 10.47

Высота:
h =
ab
c
=
13.74·15.8
20.94
= 10.37
или:
h = b·sin(α°)
= 15.8·sin(41°)
= 15.8·0.6561
= 10.37
или:
h = b·cos(β°)
= 15.8·cos(49°)
= 15.8·0.6561
= 10.37
или:
h = a·cos(α°)
= 13.74·cos(41°)
= 13.74·0.7547
= 10.37
или:
h = a·sin(β°)
= 13.74·sin(49°)
= 13.74·0.7547
= 10.37

Площадь:
S =
ab
2
=
13.74·15.8
2
= 108.55

Радиус вписанной окружности:
r =
a+b-c
2
=
13.74+15.8-20.94
2
= 4.3

Периметр:
P = a+b+c
= 13.74+15.8+20.94
= 50.48
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.