Решение треугольника c катетом 180 и углом 3 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=9.434
b=180
c=180.25
87°
S=849.07
P=369.68
r=4.592
R=90.13
h=9.421
mc=90.13

Гипотенуза:
c =
b
cos(α°)
=
180
cos(3°)
=
180
0.9986
= 180.25

Угол:
β° = 90°-α°
= 90°-3°
= 87°

Высота:
h = b·sin(α°)
= 180·sin(3°)
= 180·0.05234
= 9.421

Катет:
a = h·
c
b
= 9.421·
180.25
180
= 9.434
или:
a =  c2 - b2
=  180.252 - 1802
=  32490.1 - 32400
=  90.06
= 9.49
или:
a = c·sin(α°)
= 180.25·sin(3°)
= 180.25·0.05234
= 9.434
или:
a = c·cos(β°)
= 180.25·cos(87°)
= 180.25·0.05234
= 9.434
или:
a =
h
cos(α°)
=
9.421
cos(3°)
=
9.421
0.9986
= 9.434
или:
a =
h
sin(β°)
=
9.421
sin(87°)
=
9.421
0.9986
= 9.434
или:
a =  
c2 -  c4- 4c2h2
2
=  
180.252 -  180.254- 4·180.252·9.4212
2
=  
32490.1 -  1055606598- 4·32490.1·88.76
2
=  
32490.1 -  1044071313
2
= 9.434

Площадь:
S =
h·c
2
=
9.421·180.25
2
= 849.07

Радиус описанной окружности:
R =
c
2
=
180.25
2
= 90.13

Медиана:
Mc =
c
2
=
180.25
2
= 90.13

Радиус вписанной окружности:
r =
a+b-c
2
=
9.434+180-180.25
2
= 4.592

Периметр:
P = a+b+c
= 9.434+180+180.25
= 369.68
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.