меню

Решение треугольника c катетом 500 и углом 24 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=222.59
b=500
c=547.35
24°
66°
S=55651.8
P=1269.9
r=87.62
R=273.68
h=203.35
mc=273.68

Гипотенуза:
c =
b
cos(α°)
=
500
cos(24°)
=
500
0.9135
= 547.35

Угол:
β° = 90°-α°
= 90°-24°
= 66°

Высота:
h = b·sin(α°)
= 500·sin(24°)
= 500·0.4067
= 203.35

Катет:
a = h·
c
b
= 203.35·
547.35
500
= 222.61
или:
a =  c2 - b2
=  547.352 - 5002
=  299592 - 250000
=  49592
= 222.69
или:
a = c·sin(α°)
= 547.35·sin(24°)
= 547.35·0.4067
= 222.61
или:
a = c·cos(β°)
= 547.35·cos(66°)
= 547.35·0.4067
= 222.61
или:
a =
h
cos(α°)
=
203.35
cos(24°)
=
203.35
0.9135
= 222.61
или:
a =
h
sin(β°)
=
203.35
sin(66°)
=
203.35
0.9135
= 222.61
или:
a =  
c2 -  c4- 4c2h2
2
=  
547.352 -  547.354- 4·547.352·203.352
2
=  
299592 -  89755366464- 4·299592·41351.2
2
=  
299592 -  40201411622
2
= 222.59

Площадь:
S =
h·c
2
=
203.35·547.35
2
= 55651.8

Радиус описанной окружности:
R =
c
2
=
547.35
2
= 273.68

Медиана:
Mc =
c
2
=
547.35
2
= 273.68

Радиус вписанной окружности:
r =
a+b-c
2
=
222.59+500-547.35
2
= 87.62

Периметр:
P = a+b+c
= 222.59+500+547.35
= 1269.9
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: