Решение треугольника c катетом 95 и гипотенузой 240 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=95
b=220.4
c=240
23.3°
66.7°
S=10469
P=555.4
r=37.7
R=120
h=87.25
mc=120

Катет:
b =  c2 - a2
=  2402 - 952
=  57600 - 9025
=  48575
= 220.4

Угол:
α° = arcsin
a
c
= arcsin
95
240
= 23.3°

Радиус описанной окружности:
R =
c
2
=
240
2
= 120

Медиана:
Mc =
c
2
=
240
2
= 120

Угол:
β° = arcsin
b
c
= arcsin
220.4
240
= 66.7°
или:
β° = 90°-α°
= 90°-23.3°
= 66.7°

Высота:
h =
ab
c
=
95·220.4
240
= 87.24
или:
h = b·sin(α°)
= 220.4·sin(23.3°)
= 220.4·0.3955
= 87.17
или:
h = a·cos(α°)
= 95·cos(23.3°)
= 95·0.9184
= 87.25

Площадь:
S =
ab
2
=
95·220.4
2
= 10469

Радиус вписанной окружности:
r =
a+b-c
2
=
95+220.4-240
2
= 37.7

Периметр:
P = a+b+c
= 95+220.4+240
= 555.4
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.