Решение треугольника c катетом 1000 и углом 25 подробное решение с рисунком
Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Ответ:
a=1000
b=2144.6
c=2366.3
25°
65°
S=1072289
P=5510.9
r=389.15
R=1183.2
h=906.3
mc=1183.2
Гипотенуза:
c =
a
sin(α°)
=
1000
sin(25°)
=
1000
0.4226
= 2366.3
Угол:
β° = 90°-α°
= 90°-25°
= 65°
Высота:
h = a·cos(α°)
= 1000·cos(25°)
= 1000·0.9063
= 906.3
Катет:
b = h·
c
a
= 906.3·
2366.3
1000
= 2144.6
или:
b = c2 - a2
= 2366.32 - 10002
= 5599376 - 1000000
= 4599376
= 2144.6
или:
b = c·sin(β°)
= 2366.3·sin(65°)
= 2366.3·0.9063
= 2144.6
или:
b = c·cos(α°)
= 2366.3·cos(25°)
= 2366.3·0.9063
= 2144.6
или:
b =
h
sin(α°)
=
906.3
sin(25°)
=
906.3
0.4226
= 2144.6
или:
b =
h
cos(β°)
=
906.3
cos(65°)
=
906.3
0.4226
= 2144.6
или:
b =
c2 + c4- 4c2h2
2
=
2366.32 + 2366.34- 4·2366.32·906.32
2
=
5599376 + 31353011589376- 4·5599376·821379.7
2
=
5599376 + 12956156473107
2
= 2144.6
Площадь:
S =
h·c
2
=
906.3·2366.3
2
= 1072289
Радиус описанной окружности:
R =
c
2
=
2366.3
2
= 1183.2
Медиана:
Mc =
c
2
=
2366.3
2
= 1183.2
Радиус вписанной окружности:
r =
a+b-c
2
=
1000+2144.6-2366.3
2
= 389.15
Периметр:
P = a+b+c
= 1000+2144.6+2366.3
= 5510.9
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Основные характеристики прямоугольного треугольника
1. Углы:
• Один угол равен 90° (прямой угол).
• Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).
2. Стороны:
• Катеты: две стороны, образующие прямой угол (обозначаются как a и b ).
• Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как c ).
3. Теорема Пифагора:
• Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.
• Формула: c² = a² + b² .
Параметры
1. Площадь:
• Площадь S прямоугольного треугольника вычисляется по формуле: S = a ⋅ b / 2
2. Периметр:
• Периметр P прямоугольного треугольника вычисляется по формуле: P = a + b + c
Применение
• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.
• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).
Тригонометрия
• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:
• Синус угла α (противолежащая катета к гипотенузе):
sin(α) = a / c
• Косинус угла α (прилежащий катет к гипотенузе):
cos(α) = b / c
• Тангенс угла α (противолежащий катет к прилежащему):
tan(α) = a / b
Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.
Похожие калькуляторы: