Решение треугольника c катетом 7,5 и углом 30 и углом 60 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=4.329
b=7.5
c=8.661
30°
60°
S=16.24
P=20.49
r=1.584
R=4.331
h=3.75
mc=4.331

Гипотенуза:
c =
b
sin(β°)
=
7.5
sin(60°)
=
7.5
0.866
= 8.661
или:
c =
b
cos(α°)
=
7.5
cos(30°)
=
7.5
0.866
= 8.661

Высота:
h = b·sin(α°)
= 7.5·sin(30°)
= 7.5·0.5
= 3.75
или:
h = b·cos(β°)
= 7.5·cos(60°)
= 7.5·0.5
= 3.75

Катет:
a = h·
c
b
= 3.75·
8.661
7.5
= 4.331
или:
a =  c2 - b2
=  8.6612 - 7.52
=  75.01 - 56.25
=  18.76
= 4.331
или:
a = c·sin(α°)
= 8.661·sin(30°)
= 8.661·0.5
= 4.331
или:
a = c·cos(β°)
= 8.661·cos(60°)
= 8.661·0.5
= 4.331
или:
a =
h
cos(α°)
=
3.75
cos(30°)
=
3.75
0.866
= 4.33
или:
a =
h
sin(β°)
=
3.75
sin(60°)
=
3.75
0.866
= 4.33
или:
a =  
c2 -  c4- 4c2h2
2
=  
8.6612 -  8.6614- 4·8.6612·3.752
2
=  
75.01 -  5626.5- 4·75.01·14.06
2
=  
75.01 -  1407.9
2
= 4.329

Площадь:
S =
h·c
2
=
3.75·8.661
2
= 16.24

Радиус описанной окружности:
R =
c
2
=
8.661
2
= 4.331

Медиана:
Mc =
c
2
=
8.661
2
= 4.331

Радиус вписанной окружности:
r =
a+b-c
2
=
4.329+7.5-8.661
2
= 1.584

Периметр:
P = a+b+c
= 4.329+7.5+8.661
= 20.49
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.