Решение треугольника c катетом 2.5 и катетом 6.70 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2.5
b=6.70
c=7.151
20.5°
69.5°
S=8.375
P=16.35
r=1.025
R=3.576
h=2.342
mc=3.576

Гипотенуза:
c =  a2 + b2
=  2.52 + 6.702
=  6.25 + 44.89
=  51.14
= 7.151

Площадь:
S =
ab
2
=
2.5·6.70
2
= 8.375

Угол:
α° = arcsin
a
c
= arcsin
2.5
7.151
= 20.5°

Угол:
β° = arcsin
b
c
= arcsin
6.70
7.151
= 69.5°

Высота:
h =
ab
c
=
2.5·6.70
7.151
= 2.342
или:
h =
2S
c
=
2 · 8.375
7.151
= 2.342

Радиус вписанной окружности:
r =
a+b-c
2
=
2.5+6.70-7.151
2
= 1.025

Радиус описанной окружности:
R =
c
2
=
7.151
2
= 3.576

Периметр:
P = a+b+c
= 2.5+6.70+7.151
= 16.35

Медиана:
Mc =
c
2
=
7.151
2
= 3.576
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.