меню

Решение треугольника c катетом 481 и углом 34 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
  • Калькулятор
  • Инструкция
  • История
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Ответ:
Прямоугольный треугольник
a=324.44
b=481
c=580.22
34°
56°
S=78033.8
P=1385.7
r=112.61
R=290.11
h=268.98
mc=290.11

Гипотенуза:
c =
b
cos(α°)
=
481
cos(34°)
=
481
0.829
= 580.22

Угол:
β° = 90°-α°
= 90°-34°
= 56°

Высота:
h = b·sin(α°)
= 481·sin(34°)
= 481·0.5592
= 268.98

Катет:
a = h·
c
b
= 268.98·
580.22
481
= 324.46
или:
a =  c2 - b2
=  580.222 - 4812
=  336655.2 - 231361
=  105294.2
= 324.49
или:
a = c·sin(α°)
= 580.22·sin(34°)
= 580.22·0.5592
= 324.46
или:
a = c·cos(β°)
= 580.22·cos(56°)
= 580.22·0.5592
= 324.46
или:
a =
h
cos(α°)
=
268.98
cos(34°)
=
268.98
0.829
= 324.46
или:
a =
h
sin(β°)
=
268.98
sin(56°)
=
268.98
0.829
= 324.46
или:
a =  
c2 -  c4- 4c2h2
2
=  
580.222 -  580.224- 4·580.222·268.982
2
=  
336655.2 -  113336723687- 4·336655.2·72350.2
2
=  
336655.2 -  15908439483
2
= 324.44

Площадь:
S =
h·c
2
=
268.98·580.22
2
= 78033.8

Радиус описанной окружности:
R =
c
2
=
580.22
2
= 290.11

Медиана:
Mc =
c
2
=
580.22
2
= 290.11

Радиус вписанной окружности:
r =
a+b-c
2
=
324.44+481-580.22
2
= 112.61

Периметр:
P = a+b+c
= 324.44+481+580.22
= 1385.7
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.

Похожие калькуляторы: