Решение треугольника c катетом 2,5 и гипотенузой 14 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=2.5
b=13.77
c=14
10.3°
79.7°
S=17.21
P=30.27
r=1.135
R=7
h=2.46
mc=7

Катет:
b =  c2 - a2
=  142 - 2.52
=  196 - 6.25
=  189.75
= 13.77

Угол:
α° = arcsin
a
c
= arcsin
2.5
14
= 10.3°

Радиус описанной окружности:
R =
c
2
=
14
2
= 7

Медиана:
Mc =
c
2
=
14
2
= 7

Угол:
β° = arcsin
b
c
= arcsin
13.77
14
= 79.6°
или:
β° = 90°-α°
= 90°-10.3°
= 79.7°

Высота:
h =
ab
c
=
2.5·13.77
14
= 2.459
или:
h = b·sin(α°)
= 13.77·sin(10.3°)
= 13.77·0.1788
= 2.462
или:
h = a·cos(α°)
= 2.5·cos(10.3°)
= 2.5·0.9839
= 2.46

Площадь:
S =
ab
2
=
2.5·13.77
2
= 17.21

Радиус вписанной окружности:
r =
a+b-c
2
=
2.5+13.77-14
2
= 1.135

Периметр:
P = a+b+c
= 2.5+13.77+14
= 30.27
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.