Решение треугольника c гипотенузой 12,98 и углом 8,3 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=1.874
b=12.84
c=12.98
8.3°
81.7°
S=12.03
P=27.69
r=0.867
R=6.49
h=1.854
mc=6.49

Катет:
a = c·sin(α°)
= 12.98·sin(8.3°)
= 12.98·0.1444
= 1.874

Катет:
b = c·cos(α°)
= 12.98·cos(8.3°)
= 12.98·0.9895
= 12.84

Угол:
β° = 90°-α°
= 90°-8.3°
= 81.7°

Радиус описанной окружности:
R =
c
2
=
12.98
2
= 6.49

Медиана:
Mc =
c
2
=
12.98
2
= 6.49

Высота:
h =
ab
c
=
1.874·12.84
12.98
= 1.854
или:
h = b·sin(α°)
= 12.84·sin(8.3°)
= 12.84·0.1444
= 1.854
или:
h = b·cos(β°)
= 12.84·cos(81.7°)
= 12.84·0.1444
= 1.854
или:
h = a·cos(α°)
= 1.874·cos(8.3°)
= 1.874·0.9895
= 1.854
или:
h = a·sin(β°)
= 1.874·sin(81.7°)
= 1.874·0.9895
= 1.854

Площадь:
S =
ab
2
=
1.874·12.84
2
= 12.03

Радиус вписанной окружности:
r =
a+b-c
2
=
1.874+12.84-12.98
2
= 0.867

Периметр:
P = a+b+c
= 1.874+12.84+12.98
= 27.69
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.