Решение треугольника c катетом 550 и углом 35 подробное решение с рисунком

Калькулятор прямоугольного треугольника — это инструмент, который помогает вычислять различные параметры прямоугольного треугольника, такие как длина сторон, площадь, периметр,углы и высоты. Достаточно ввести 2 любых параметра прямоугольного треугольника.
Введите только то что известно:
x
Прямоугольный треугольник
S=
P=
r=
R=
h=
mc=
Попробуйте новый калькулятор прямоугольного треугольника с поддержкой квадратных корней в поле ввода: Перейти
Распечатать
Показать видео решения
Ответ:
Прямоугольный треугольник
a=385.16
b=550
c=671.39
35°
55°
S=105905.1
P=1606.6
r=131.89
R=335.7
h=315.48
mc=335.7

Гипотенуза:
c =
b
cos(α°)
=
550
cos(35°)
=
550
0.8192
= 671.39

Угол:
β° = 90°-α°
= 90°-35°
= 55°

Высота:
h = b·sin(α°)
= 550·sin(35°)
= 550·0.5736
= 315.48

Катет:
a = h·
c
b
= 315.48·
671.39
550
= 385.11
или:
a =  c2 - b2
=  671.392 - 5502
=  450764.5 - 302500
=  148264.5
= 385.05
или:
a = c·sin(α°)
= 671.39·sin(35°)
= 671.39·0.5736
= 385.11
или:
a = c·cos(β°)
= 671.39·cos(55°)
= 671.39·0.5736
= 385.11
или:
a =
h
cos(α°)
=
315.48
cos(35°)
=
315.48
0.8192
= 385.11
или:
a =
h
sin(β°)
=
315.48
sin(55°)
=
315.48
0.8192
= 385.11
или:
a =  
c2 -  c4- 4c2h2
2
=  
671.392 -  671.394- 4·671.392·315.482
2
=  
450764.5 -  203188634460- 4·450764.5·99527.6
2
=  
450764.5 -  23734599059
2
= 385.16

Площадь:
S =
h·c
2
=
315.48·671.39
2
= 105905.1

Радиус описанной окружности:
R =
c
2
=
671.39
2
= 335.7

Медиана:
Mc =
c
2
=
671.39
2
= 335.7

Радиус вписанной окружности:
r =
a+b-c
2
=
385.16+550-671.39
2
= 131.89

Периметр:
P = a+b+c
= 385.16+550+671.39
= 1606.6
Сохраните ссылку на это решение:
Скопировано
Прямоугольный треугольник — это треугольник, у которого один из углов равен 90 градусам.

Основные характеристики прямоугольного треугольника

1. Углы:

   • Один угол равен 90° (прямой угол).

   • Два других угла всегда острые и в сумме дают 90° (так как сумма углов в любом треугольнике равна 180°).

2. Стороны:

   • Катеты: две стороны, образующие прямой угол (обозначаются как  a  и  b ).

   • Гипотенуза: сторона, противоположная прямому углу, является самой длинной стороной (обозначается как  c ).

3. Теорема Пифагора:

   • Основное свойство прямоугольного треугольника: квадрат длины гипотенузы равен сумме квадратов длин катетов.

   • Формула:  c² = a² + b² .

Параметры

1. Площадь:

   • Площадь  S  прямоугольного треугольника вычисляется по формуле:  S = a ⋅ b / 2

2. Периметр:

   • Периметр  P  прямоугольного треугольника вычисляется по формуле: P = a + b + c


Применение

• Прямоугольные треугольники широко используются в геометрии, тригонометрии, архитектуре и инженерии.

• Они являются основой для определения тригонометрических функций (синус, косинус, тангенс).

Тригонометрия

• В прямоугольном треугольнике тригонометрические функции определяются следующим образом:

  • Синус угла  α  (противолежащая катета к гипотенузе):

sin(α) = a / c


Косинус угла  α  (прилежащий катет к гипотенузе):

cos(α) = b / c


Тангенс угла  α  (противолежащий катет к прилежащему):

tan(α) = a / b


Прямоугольные треугольники играют важную роль в математике и смежных областях. Их свойства и теоремы позволяют решать множество задач, связанных с геометрией и физикой.